chapter 12 1 m3 of iron mass = 8000 kg ... density = 8000 kg/m3 1 m3 of oak wood mass = 700 kg :. density = 700 kg/m³ Polystyrene has a very low density Which is heavier – iron or wood? Many people say iron – and yet an iron nail is lighter than a wooden tree! What people mean is that iron and wood have different densities. To measure density, we need to measure the mass of a definite mass Density = volume volume of the substance. In fact: If the mass is measured in kg (kilograms) and the volume in m³ (cubic metres), the density is measured in kg/m^3 (kilograms per metre cubed). Sometimes the mass is measured in \boldsymbol{g} (grams) and the volume in \mathbf{cm}^3 (cubic centimetres) so the density is measured in \mathbf{g}/\mathbf{cm}^3 (grams per centimetre cubed). Here are the densities of several substances: | Substance | | | Density | | |-----------|---------|-----|-------------------|-------------------| | Solid | Liquid | Gas | kg/m ³ | g/cm ³ | | Gold | | | 19 000 | 19 | | | Mercury | | 14 000 | 14 | | Lead | | | 11 000 | 11 | | Iron | | | 8 000 | 8 | | | Water | | 1 000 | 1 | | Ice | | | 920 | 0.92 | | | Petrol | | 800 | 0.80 | | | | Air | 1.3 | 0.0013 | What do you notice about the numbers in the table? Example An engineer needs to know the mass of a steel girder which is 20 m long, 0.1 m wide and 0.1 m high. (Density of steel = 8000 kg/m^3) Volume of girder = length \times width \times height Calculate the $= 20 \,\mathrm{m} \times 0.1 \,\mathrm{m} \times 0.1 \,\mathrm{m}$ volume first: $= 0.2 \, \text{m}^3$ mass Density = Formula: volume Then put in $8000 = \frac{1}{0.2 \, \text{m}^3}$ the numbers: \therefore mass = 8000 \times 0.2 = 1600 kg